
1FREDBORG.ORG

GUIDE: CODING FOR
PERFORMANCE IN

BUSINESS CENTRAL

2 FREDBORG.ORG

Index
Introduction.. 3
Increasing performance in general................... 3
Best practice design patterns... 3
Keep it simple.. 3
Create buffer tables.. 4
Webservices.. 4
Built-in data types... 5
TextBuilder.. 5
Dictionary ... 7
List.. 9
Conclusion.. 10
Multi-Threading.. 11
Page Background Tasks.. 11
Task Scheduler ... 14
Conclusion... 14
Unit Testing Performance............................... 15
SqlRowsRead.. 15
SqlStatementsExecuted.. 16
Conclusion.. 16
Finale notes.. 17

3FREDBORG.ORG

Introduction
One of the main problems with Business Central is performance, and while Mi-
crosoft is during all they can to try and optimize the application to be able to run
faster. We, as developers, also have a responsibility to write our code correctly,
and not just the way that we have always done. So in this short reference guide,
I will try to cover some of the things that you should consider implementing
when coding in AL.

Who is this guide for?
This guide is for anyone that is creating Extensions for Business Central. How-
ever, this guide is not a getting started with writing extensions guide, so before
you start, you need to know the basics of writing AL code. I will also not cover
how to setup Visual Studio Code or docker; this guide is 100% focused on how
to improve the performance of your extensions.

Who am I?
My name is Dennis Fredborg, and I am at the time of writing this guide working
as a senior developer at RelateIT. I have been writing blogs and creating videos
about Microsoft NAV and Business Central, and all in between including Azure
DevOps and docker, for a couple of years. I worked with Microsoft Dynamics
since 2012, and before that, I worked with web and mobile development.

Increasing performance in general
There are some ways that you can increase your performance in a more general
sense.

Best practice design patterns
One of the best ways to increase performance is to use best practice patterns.
The reason why it is a good idea always to use best practice design patterns is
well because they are the best practice. When using design patterns, you will
make your code much easier to read by other developers, and on top of that,
if you implement design patterns, you are sure that you structure your code in
the best way possible.

Keep it simple
The title pretty much says it all; you should keep everything as simple as possi-
ble, this means stay away from adding unnecessary fact boxes, because while it
might be nice to have all your information visible all the time, it will also result
in a lot of background calculations. So, if there is some information that you
want to display, consider offloading the calculations from the UI thread unto a
page background task (we will get back to page background tasks later). In
the same ballpark as fact boxes, you should also keep the number of cues on
your role center to a minimum, and the number of flow fields on your pages
should also be kept low. So, the whole idea is only to display, need to have, and
not nice to have.

4 FREDBORG.ORG

Create buffer tables
Instead of having expensive calculations running every time you open a page.
Consider the fact if the data actually changes that much, or if you could set up a
background task that could update the numbers perhaps once an hour, and then
storing that number in a buffer table which you then can display on your Page.

Webservices
You should not expose standard pages as web services. There are a couple of
reasons for this. The first is that if you expose a standard page, you do not have
the same control over which fields are made available. The second is that many
pages have fact boxes, which you should not display in web services because
even though they will not be visible in the web service, Business Central will still
execute them, which goes without saying it is just a waste of resources. The last
reason is that many pages might have some code OnAfterGetCurrRecord, which
might do a lot of UI changes but has no impact on what is exposed in the web
service. So, like the fact boxes, it is a waste of resources. So, if you are using
web service, you should always create a new page, so you have 100% control
over your web services.

5FREDBORG.ORG

Built-in data types

To help increase performance, Microsoft has added some new data types that
will not only make our life’s easier but will also make our code run faster. The
idea behind the new data types is that you can work with collections client-side
and thereby decreasing the number of SQL transactions, which is one of the
most significant performance issues in Business Central because the applica-
tion is too tightly coupled with our database, that pretty much everything we
do requires a call to the SQL server, while most other modern systems have a
layer that will cache data and only writing data when needed. Microsoft knows
that the tight coupling of the application and the SQL database is a performan-
ce problem, and they are working on moving more client-side; however, this is
not an easy thing to do, but these new data types for sure is a step in the right
direction.

TextBuilder
The TextBuilder data type is straightforward to use, and it was created to make
working with strings easier. One of the places where you should use the Text-
Builder is when you are concatenating strings, so instead of using += to add
sting together, you should use the TextBuilder Append function. So, let us see
how this works in practice:

As you can see it is pretty straight forward you define you TextBuilder and then
use the Append function to add text to it, besides the Append function you also
have the ability to add a new line using the AppendLine:

6 FREDBORG.ORG

The difference between the two appends is that the append line will automati-
cally add a line terminator to the end. You can also call the AppenLine without a
value, which will result in it only adding the line terminator.
The TextBuilder also contains several ways to work with the text inside the Text-
Builder, you, for example, have the Replace function:

This function will replace any value in the TextBuilder with a new value. You also
have the Remove:

Which will remove any substring from you TextBuilder, and then you have the
ToText function:

Which will convert whatever content you have in your TextBuilder to a text. Be-
sides these, there are several other functions that you can use when working
with the TextBuilder, but I will leave you to explorer them on your own.

7FREDBORG.ORG

Dictionary

The Dictionary data types are one of those datatypes that you have to master.
The reason is that it is being used more and more across the Business Central
Application. The reason being that it is an effortless way of storing structured
data in memory. The way that the dictionary work is much in the same way that
a real-world dictionary works, where you have a key, which would be your word,
and a value which would be what your key means. As I wrote earlier, then dictio-
naries have become one of the preferred ways to pass data throughout Business
Central, so let us look at how you can use the dictionary data type.
To add an item to your Dictionary, you must use the Add function:

The signature of the Dictionary is Tkey, Tvalue, so you can create your Dictiona-
ry with any combinations of simple data types; in my example, I have created it
with Text, Text. I then use the Add function to add new values to my Dictionary,
and you can then later use the Get function to get the value of a given key by
doing something like this:

This function will copy the value of the associated key to your dictionaryValue
variable; you also have the possibility to change the value by using the Set fun-
ction.

If you wish to check if you Dictionary contains a given key, you can use the
ContainsKey function:

8 FREDBORG.ORG

The ContainsKey will return a Boolean. You also have the ability to remove a key
by using the Remove function:

Should you choose to use an integer as your key you can create a for loop to
loop through all your items:

In this example, I have created a Dictionary where I used Integer as the key,
which I incremented, and then I added the Item No. As the value, which I then
can use to find my Items. Now, as I wrote earlier, then the Dictionary can only
hold simple data types. So it can not contain records, however it can contain
other Dictionaries which means you can indeed use the Dictionary as a replace-
ment for your temporary tables you can see a simple way of doing this below:

So, as you can see, then you have a lot of different possibilities with the Dic-
tionary, which is why it is significant that Microsoft has given us this new data
type to use.

9FREDBORG.ORG

List

The List is a straightforward data type, which you should use instead of Arrays
and possibly also temporary tables. What makes the List data type better than
the Array is that you do not have to define the size of your List as you do with
your arrays. This means that the sky is the limit, besides that it works in much
the same way that you would except a collection to work, you can define your
List to be of any simple data type. You can use the Add function to add values
to your collection:

You can then use the Contains to check if a given value exists in your List:

You can use the Remove to delete items from your collection:

And just like the Array, your collection has an index which means that you can
use the for loop to loop through your collection and use the Get to retrieve the
value:

10 FREDBORG.ORG

So, as you can see, the List data type is a straightforward way to create a col-
lection, with some great built-in functions to make it easier to work with your
collection.

Conclusion

The conclusion of this chapter is, Microsoft has given us some new great built-in
datatypes, which can help you to improve the performance of your extensions
with little to no extra work. So next time you start writing your future extensi-
on, please keep these new data types in mind.

11FREDBORG.ORG

Multi-Threading

In Business Central, Microsoft has now given us the possibility to create a kind
of multi-threading, which is fantastic; however, remember that with great pow-
er comes great responsibility. Multi-threading is one of those things that has
always been missing in Microsoft Dynamics NAV, which was always disappoin-
ting, but do not get me wrong I understand why we haven’t seen it before now.
The reason is that once you make some multi-threaded, everything becomes
much more complicated, which is also why we have only gotten a minimal type
of multi-threading this time around, but maybe that will change in the future.
So, why has Microsoft decided that now was the time to give us the ability to
create multi-threading? The answer is quite simple, with all the complaints that
Microsoft has gotten that the system runs slow when we navigate throughout
the system. Microsoft had to find a way for us to offload our complicated and
long-running tasks from our main UI thread, thereby not locking the user inter-
face and forcing the end-user to wait until a given job has finished.

Page Background Tasks

Page background tasks are exactly what the name implies; they are a way for
you to offload any reading task from your Page and move it to the background
letting the user freely use the rest of the Page without having to wait. There
is a couple of weaknesses when we are talking about page background tasks.
The first is that you can only perform read operations in your background task,
which means that you cannot write anything to the database. The second is
that you can only have five background tasks running, should you start more
than five they are queued, the third is that you must not change the record ID
because this will cause the task to fail since it is bound to the record Id. The
last is that the task only runs as long as the Page that started the task is open;
once you close the Page, the task will be canceled. To get the most out of page
background tasks, you should consider instead of creating flow fields, then you
should create functions that can run in your background task, so the end-user
does not need to wait for your flowfields to be calculated.
So let us see how you can create page background task, first, off you are going
to need a codeunit. This codeunit must contain a variable of type Dictionary,
which has to be of type Text, Text (I told you that Microsoft has started using
Dictionary across the application). You can then execute whatever code you
wish to run, and add the result to your Dictionary. The last thing you must do is
call the Page.SetBackgroundTaskResult passing your Dictionary as a parameter:

12 FREDBORG.ORG

Next, you must add code to the Page that you wish to start the page backg-
round task. First off, you must create a global Integer that will hold the TaskID
you do not need to set this ID as it will automatically be assigned when you
start your background task on the OnAfterGetRecord trigger. You then execute
the CurrPage.EnqueueBackgroundTask, where you pass the task ID, the codeu-
nit that you wish to run, a Dictionary with wherever parameters that you might
want to pass to the codeuint, a time out in milliseconds which defines for how
long the task can run before it should fail. The last parameter is to determine
at what level the task should fail. You also have to define a new trigger called
OnPageBackgroundTaskCompleted which takes the TaskID and the Result Dic-
tionary, in this function you can then act on the result of the background task,
in my example, I am just updating a field on my Page:

13FREDBORG.ORG

And that is pretty much all there is to page background tasks, so as you can
see, they are effortless to use. If you use them correctly, they can help you to
give the end-user a better experience, and they are quite harmless since there
is no cleanup. Since you cannot perform write operations, you are not going to
end up creating deadlocks, which is one of the many problems with multi-threa-
ding.

Background Sessions

The background session is more potent than the page background task becau-
se it comes with very few limits; however, as the name suggests, it will indeed
create a new session, which is very costly. So, you should only use Background
Sessions when the code that you wish to execute is costly. The way that Back-
ground sessions work is much the same way that you could do in NAV, where
you let your code call a self-published web service. It has the same limits that
web services do, which is that it cannot handle UI’s, and a crucial thing when
working with Background Sessions is to remember to stop them once you are
done; otherwise, they will not die. The code to start a Background Session is
very simple. You create a variable of type Integer that will hold your session
ID. You then call the STARTSESSION with the session ID and the codeunit that
you wish to execute. You can also pass a CompanyName and a record to the
STARTSESSION, the STARTSESSION will return a Boolean, which you can use
to determine rather or not you need to close the session again:

14 FREDBORG.ORG

So the Background Sessions are a compelling way of creating a new thread
because you can pretty much do anything in a Background Session. However,
this also comes with a price, the main one being that you will create a whole
new session on your tenant, and it is hard to control the Background Session
once it has started, and because you can do write transactions in the Backg-
round Session, you can cause deadlocks.

Task Scheduler

The Task Scheduler is by no means anything new in NAV / BC, but it is still
important to note that this is also an option if you wish to create a background
thread, but there is nothing new here it works as it has always done:

You should consider using this option instead of the Background Session
because you have more control when it comes to the Task Scheduler, while,
of course, the big downside is that it does rely on the job queue. Unlike both
the Page Background Task and the Background Sessions, the Task Scheduler
survives server restarts.

Conclusion

Microsoft has now given us some tools to help improve performance by of-
floading tasks to other threads, and I would highly recommend that you in-
vestigate implementing the Page Background Task wherever it makes sense.
In contrast, the other two types of tasks you should use with caution because
you might end up doing more harm than good.

15FREDBORG.ORG

Unit Testing Performance
One of the best weapons against slow performance is testing and monitoring.
The primary way of testing is doing manual testing, where you would go through
the application and get a real-world view of how everything runs; however, this
can be a very daunting task. The problem is that something can run fast one
day, and then a change can be made to the system that makes it run slow the
next, and also manual testing for performance can quickly become subjective
because something someone finds slow someone else might not find slow. So,
while you should always perform manual testing, it cannot stand alone. The
next thing you can do is set up Application Insight. Which can be used to mo-
nitor Business Central as a whole, and this is very easy to set up, all you need
to do is create an Application Insights on your Azure subscription, this will give
you a key that you can add to your tenants in your Partner Center. The service
will then start feeding your Applications Insight with all the data that you would
find in the only days in your SQL profiler. I would suggest that you set this up
on the customers that you wish to monitor. However, this is not a way to catch
performance issues upfront, but more a way to monitor when things are alrea-
dy running slow in production. The last way is to create performance unit tests
that, just like any other unit tests, are used to be able to catch any errors and
performance issues before they make it to production. So, let us see how you
can get started with writing performance unit tests. Microsoft has given us the
ability to call the SessionInformation, which has two methods. SqlRowsRead,
which will return the number of rows read throughout the whole session. Sql-
StatementsExecuted() will return the number of statements executed throug-
hout your session; both of these numbers can also be found in your debugger.
However, being able to get this information through code gives us the ability to
run unit tests on the results.

SqlRowsRead

To run the unit test on your SqlRowsRead, you must first create a codeunit with
subtype Test, since the SqlRowRead will return all the rows read throughout
your entire session. We are only interested in the rows read doing or test. So,
we need to run the SqlRowsRead before and after our code and get the diffe-
rence, next you need to figure out how many reads are too many for your code
and test rather it stays within the limit, an example could be as follows:

16 FREDBORG.ORG

This code check that when I use a Get on my customer, that I only make one
read operation, I know this is a silly example, but the reason why I use it is to
keep it as simple as possible.

SqlStatementsExecuted

The SqlStatementsExecuted works the same way as the SqlRowRead, with the
only difference that it gives you the number of SQL stamens that were execut-
ed, again here is a simple example.

I will not go into more detail since I feel that testing is too broad a topic for
this short guide, but I just wanted to let you know that you can indeed test
the performance of your code.

Conclusion

Microsoft has given us some strong tools to help us verify that our code runs
as optimal as possible. Still, it is essential to remember that there is no silver
bullet, just because you start adding performance unit tests. Your code will
not magically be 100% optimized, but it is a great tool to add to your arsenal,
to iron out the most significant performance problems. While the Application
Insight can help you identify bottlenecks, sometimes those bottlenecks cannot
be fixed, either because it lies in the base app or in a third-party extension,
where you have no power to change anything. So, the best you can do is make
sure that your code is as optimized as it can be.

17FREDBORG.ORG

Finale notes
 As you can see then, Microsoft is trying to give us some tools to help us create
more performance-friendly extensions, which is a step in the right direction, of
course, there are still many performance problems that are out of our hands,
and we can only hope that things get better very soon. One of the main things
that I would like to see Microsoft fix is the table extensions issue. For those of
you that do not know about this issue. The problem is that every time you create
a table extension, then it will automatically create a new table; which is linked
to the main table; which means that when you, for example, want to read the
Item table it will have to create a SQL join behind the scenes on all the tables
of the table extensions. And while Microsoft’s answer to this at the moment is
that we should limit our usage of table extensions and instead create supporting
tables, this is not a valid answer, because this will over-complicate our code. The
sad thing is that specifically, table extensions was one of the coolest features of
AL, so I am keeping my fingers crossed that Microsoft will come up with a better
solution.
There are a lot of performance topics that I did not cover in this guide, but I
will likely get to those topics at another time, but that is the issue with creating
blogs, videos or guides/books at the moment, our world is changing so fast at
the moment that you cannot include everything, because then you will never be
done. Still, do not get me wrong I find that excellent because in that way I am
always kept on my toes. Well, that is it for now. I hope you found some useful
information in these pages, and until next stay safe.

